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Tutorial Goals

Familiarize with research in public and population health
Identify open areas related to health equity
Activate the machine learning community

• Introduce Public and Population Health

• Theory and framework of social determinants of health (SoDH)

• Measurement of SoDH

• SoDH interventions

• Integration of SoDH in machine learning models

• Taxonomy of health tasks

• Causal inference in public health

• Challenges with using proxies

• Algorithmic fairness and health disparities
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What is the Role of Machine Learning in Public and Population Health?

What are the challenges with health tasks? Are the challenges any
different from healthcare or other domains?
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Taxonomy of ML in Population and Public Health

Identify ML opportunities for health, comprehensively

Public health and healthcare tasks can be grouped as follows:
(1) Identification
(2) Design
(3) Prediction
(4) Allocation
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ML in Health: (1) Identification

• Disease incidence at population level [Bhatt et al., 2013]

• Disease detection including behavior and markers
[Gulshan et al., 2016]

• Multi-level factors related to health outcomes
[Weichenthal et al., 2020]

• External validity of policies [Hermanspann et al., 2017]

• Fairness of policies [Obermeyer and Mullainathan, 2019a]

• Causal treatment effects [Lodi et al., 2019]

• Individuals/subpopulations to target interventions [McGuire, 2016]

• Individuals/populations to minimize healthcare costs
[Rose et al., 2017]
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ML in Health: (2) Design

• Individual-level interventions [Rahmattalabi et al., 2018]

• Community/group- level interventions [Ahsan et al., 2013]

• Public policy [Braveman et al., 2004]

32



ML in Health: (3) Prediction

• Risk score (clinical algorithms) [Vyas et al., 2020]

• Disease prognosis [Dugan et al., 2015]

• Treatment/procedure effectiveness [Kreif et al., 2015]

• Chance of mortality [Rajkomar et al., 2018]

• Treatment adherence [Franklin et al., 2016]

• Hospital readmission [Galiatsatos et al., 2019]
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ML in Health: (4) Allocation

• Resources to individuals [Snyder et al., 2018]

• Resources to populations [Lord et al., 2015]

• Resources within hospitals [da Silveira Grübler et al., 2018]

• Care management (at both individual and population level)
[Osborn et al., 2017]
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Causality and Health Tasks
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Introduction to Causality

Causal methods have been used in epidemiology for representing domain
knowledge via causal graphs. This helps capture epistemic uncertainty as
well as incorporate prior knowledge into methods.

A T

R

Figure 14: Example causal graph where A
represents age, R represents risk factor, T
represents treatment outcomes.

Nodes represent quantities of interest.
Edges represent the relationship
between different quantities. For
example, a directed arrow from A to T
represents that age affects the
treatment outcome.
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A Natural Experiment: Estimating Population Level Education Effect on CVD

Figure 15: Conceptual model linking
educational attainment with CVD
[Hamad et al., 2019]. Numerous pathways
linking education with cardiovascular disease
(CVD).

• United States state-level compulsory
education laws provide grounds for a
natural experiment.

• Multiple risk factors like smoking,
depression, cholesterol levels, and
BMI.

• OLS - improvements in all risk
factors with increased education
level.

• IV - improvement in only some,
worsening few risk factors
(cholestrol and BMI).
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Should We Control For Smoking?

SES (early life) SES (late life)

Potroom work

Smoking

Lung disease

Figure 16: Controlling for smoking blocks the effect of early
life SES on disease risk but smoking representative of
downstream effect of job [Mcclure, 2018].

Figure 17: Hazardous conditions in an
aluminium pot rooma.

Control downstream of the exposure when estimating causal effect?

a. Source: http://www.foilvedanta.org/articles/a-nice-place-to-work-in-experiences-of-icelandic-aluminium-smelter-employees/
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How to Model Social Variables?

Using DAGs (Directed Acylic Graphs) is not the only solution
[Krieger and Davey Smith, 2016].

Challenges

• Complex social-health relations question
validity of postulated causal graphs.

• Current approaches consider DAGs as
drivers of the study.

• Can a single study support the
hypothesis?

Triangulation to the rescue.

• Integrate results from several approaches
for reliable conclusions.

• Inference to best explanation (IBE):
i Generate candidate hypothesis
ii Select from them based on

explainability.
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Can we just incorporate social variables into analyses like any other?
Are there any pitfalls to this?
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Example: ‘Race’ as a Proxy in Clinical Algorithms

Clincal Utility
Effect of race on risk score
of black patients in comparison
with non black patients

Equity concern

Cardiology Lower mortality risk
Higher threshold for allocating
clinical resources.

Cardiac Surgery
Higher risk of
operative mortality

Lower allocation of procedures to black
patients.

Nephrology Higher eGFR
Delay in specialized care assuming
better kidney functions.

Obstetrics Lower estimated success rate Reduced quality of clinical care.
Urology Lower risk of a uretral stone Reduced quality of clinical care.
Oncology Higher risk for cancer survival Fewer interventions.
Endocrinology Lower risk of osteoporosis Delayed diagnosis and intervention.

Table 1: Equity concern of clinical algorithms using ‘race’ [Vyas et al., 2020].
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Proxies and Clinical Decisions

• Should sensitive attributes be considered as proxies?

• Do social variables play the same role across all tasks, merely being
considered as protected attributes?
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Health vs Other Domains

Sensitive attributes like race, gender are often used as proxies for different
social interactions across various domains including health.

However, especially in health, they are not just mere proxies but are ‘social
determinants’ of health.

Modeling sensitive attributes in health requires understanding the complex
mechanism between them and health outcomes.
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Example: Assessing Kidney Function

Assessing kidney function is essential to recognize kidney injury which is
evaluated using glomerular filtration rate (GFR) that accounts for the serum

creatinine level.

What is serum creatinine?

A waste product in blood from muscle activity. With imparied kidney
function, the amount of serum creatinine increases in the blood which
would normally be removed from the blood by the kidneys.
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CKD-EPI Equation

Developed in 2009 using a diverse population estimate GFR from serum
creatinine, age, sex and race.

GFR = 1.41×min(Scr/K, 1)α ×max(Scr/K, 1)−1.209 × 0.993Age × 1.019[if female]

×1.159[if black]

where Scr is standardized serum creatinine in mg/dL, K is 0.7 for females
and 0.9 for males, α is -0.329 for females and -0.411 for males.
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Case for ‘Race Correction’ in eFGR Function

• Sensitive attributes like gender, race, and class may be intended as proxies for the
interactions of systems of oppression (sexism, racism, classism) and other social
processes in producing population-level incidence [Bauer, 2014].

• Estimate kidney function value (eFGR) without race correction. Researchers have been
actively demonstrating that use of race multipliers can lead to important care delays.
Recently, such efforts have lead to elimination of the race multiplier at multiple places
including MGH/Brigham. 1.

• “The challenge that scientists must address is how to report genomic variation without
inappropriately describing racial and ethnic groups as discrete population groups?”
[Bonham et al., 2018].

1https://twitter.com/LashNolen/status/1276181898394558467/photo/1
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Algorithmic fairness and health disparities
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What are Health Disparities? And Why is it Important to be Aware of Them?

A health disparity/inequality is a particular type of difference in health (or in
the most important influences on health that could potentially be shaped by
policies); it is a difference in which disadvantaged social groups—such as the
poor, racial/ethnic minorities, women, or other groups who have persistently
experienced social disadvantage or discrimination—systematically experience
worse health or greater health risks than more advantaged social groups.

Identifying health disparities is essential to understand the dynamics
of social, economic, cultural environments and their effect on health

outcomes that is related to social disadvantage.
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How to Recognize Health Disparities?

Identify health determinants

Determine health outcomes

Measure health disparities

Design appropriate interventions

Figure 18: Pipeline for detecting health disparities

Be aware of the pipeline.
Be fair to public health.

• Ensuring health equity
involves swimming in a
complex public health
ecosystem!
[Braveman, 2006]

• Touching surface of just
one facet can drown down
the effort!
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Are Average Rates Representative of the Actual Health Disparities?

Figure 19: Proportion of women in California with delayed or no prenatal care by income in
a) 1994-1995 and b) 1999-2001. Overall improvements in prenatal care rates among
childbearing women in California but disparities by income persisted
[Braveman et al., 2004].
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Intersectionality

Figure 20: Intersectionality in health
[McGibbon and McPherson, 2011]

Intersectionality is an approach or lens that
recognizes that health is shaped by a multi-
dimensional overlapping of factors such as
race, class, income, education, age, ability, sex-
ual orientation, immigration status, ethnicity,
indigeneity, and geography.
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Eco-epidemiology and Interaction terms for Social Variables

• It is common practice to evaluate an interaction between race and an exposure of
interest as evidence (or lack thereof) that an exposure contributes to a racial health
disparity. However, when using this method, researchers may attribute too much
authority to the significance of this interaction term [Ward et al., 2019]

• “Tyranny of means”: the average causal effect of a treatment is not the same as an
individual causal effect [Merlo and Wagner, 2013]

• In a multilevel framework, the “effect” of being influenced by a higher level like, the
family, neighborhood, or school can be considered as a general contextual effect. This
general influence is not properly operationalized by measuring differences between
average risks. Rather, the general influence of the context is better quantified by
measuring the share of the total interindividual heterogeneity that appears at that
specific level [Merlo et al., 2009]
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MAHIDA: Multilevel Analysis of Individual Heterogeneity and Discrimination Accuracy

Total variance = (Within-strata variance) + (between-strata variance)

“Including interaction terms encourages us to only study the intersectionality of
marginalization.” [Evans et al., 2018]

Comparison criteria
with additional sensitive attributes

Fixed effect model
(interaction terms
for intersectionality)

Multilevel model

Increase in fixed effect parameters Geometrically Linearly
Estimates adjusted
for sample size in each strata?

No Yes

Table 2: Comparison between fixed effect and multilevel approaches
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Multilevel Models

• Consistent with eco-epidemiology approach to situate individuals within intersectional
social strata instead of individual level variables

• Intersectionality situates the problems of disparities in the structural power hierarchies,
social processes, social determinants that shape the the social experiences of
individuals with the specific intersectional identities.

• It is important to examine the magnitude and direction of the intersectional interaction
effect to recognize disparities and privileges at the intersection of social experiences.

• Example work harnessing age/gender in a multilevel model helps to capture invariant
information in population attributes for a flu prediction task, to improve prediction in
datasets where groups may be under-represented [Mhasawade et al., 2020b].

54



Can Intersectionality Theory Inform the Way Forward?

• Numerous interlocking systems of privilege and oppression such as racism,
classism, sexism, and ageism push back against the “additive approach,”
which treats the advantages or disadvantages conferred through
simultaneous occupation of multiple social positions as simply
accumulated [Collins, 2002, Crenshaw, 1989, McCall, 2005].

• To describe joint effects of these systems, need a meaningful reference
point: one choice is a world where effects of all power hierarchies are
independent and additive.

• In real situations different intersectional groups have radically different
sizes and levels of social power and position, thus the average of
stratum-level means would not be a meaningful quantity.
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Algorithmic fairness

“Fairness” of decisions quantitatively defined based on statistical and machine
learning predictions [Mitchell et al., 2018].

Absence of discrimination of individuals with the same “merit”
[Kasy and Abebe, 2020].

Several definitions based on maximizing utility, ensuring equal prediction,
equal decision across advantaged and disadvantaged groups2

2For a complete summary we refer to [Mitchell et al., 2018].
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Algorithmic Fairness in Public Health

Algorithmic fairness has not accounted for complex causal relation-
ships between biological, environmental and social factors that give
rise to differences in medical conditions across protected identities
[McCradden et al., 2020].

Social and structural factors affect health across multiple intersecting iden-
tities, but the mechanism(s) by which social determinants affect health
outcomes is not always well understood.

57



Questioning the Questions we Ask!

“Don’t just ask how the algorithm treats different people differently, but
also who gets to do the treating” [Kasy and Abebe, 2020].

• Assess the causal impact of introducing the algorithm on inequality
[Kasy and Abebe, 2020].

• Consider inclusion decisions [Yang et al., 2020, Nishtala et al., 2020].

• Is the objective of eliminating disparities in line with health equity
[Obermeyer and Mullainathan, 2019b]?

• Improve methods for understanding the relation between observed space and decision
space especially when the construction is complex across different social variables
[Friedler et al., 2016].

• Assess disparities with direct and indirect path-specific causal effects [Wu et al., 2019].
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Advancing Health Disparities with ‘Fair ML’: Can Fair Algorithms be Inequitable?

Unexplained variance: sensitive attributes as ‘proxy’.

E

I

N

P

H

C

Figure 21: If the perceived protected attribute P is not distilled into components like
education E , income I , neighborhood SES N but its effect on the health outcomes H along
with the clinical variables C is assessed; then the variance between the intersectional groups
will not be identified leading to inequity across intersectional strata.
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Advancing Health Disparities with ‘Fair ML’: Can Fair Algorithms be Inequitable?

Should you only treat highly insured patients? Can it lead to inequity?

P C I

T

H

Figure 22: Is it fair to treat (T ) highly insured patients (I ) considering their perceived
protected attribute P and clinical variables C? The resulting health outcomes H may be
approximately equal across advantaged and disadvantaged groups with respect to P but
social health disparity still persists for lower insurance patients.
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Take-aways

Figure 23: Perception vs. reality (modified
from [Mitchell et al., 2018]).

• Social determinants are paramount for
attaining health equity.

• There are many Machine Learning
opportunities for better measuring,
understanding and incorporating social
determinants across health tasks.

• Health equity can be prioritized in
Machine Learning models via types of
questions asked, how data is
represented, etc.
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ML in Population and Public Health

For a complete list of related articles, more information and to give feedback:
https://ChunaraLab.github.io/MLPH/
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