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Tutorial Goals

Familiarize with research in public and population health
Identify open areas related to health equity
Activate the machine learning community

• Introduce Public and Population Health

• Theory and framework of social determinants of health (SoDH)

• Measurement of SoDH

• SoDH interventions

• Integration of SoDH in machine learning models

• Taxonomy of health tasks

• Causal inference in public health

• Challenges with using proxies

• Algorithmic fairness and health disparities
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Social Determinants of Health

Figure 5: Five key areas of SoDH

“Conditions in which people are
born, grow, live, work and age.
These circumstances are shaped by
the distribution of money, power
and resources at global, national
and local levels.” [WHO, 2008]
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Theory and Framework in Analyzing Social Determinants of Health

Purposes of conceptual frameworks [WHO, 2010]:

• Guide empirical work to enhance understanding of determinants and
mechanisms

• Guide policy-making to illuminate entry points for interventions and
policies

Two Theories:

• Life course approach to inter-generational effects

• Intersectionality
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Life Course Approach to Inter-generational Effects

Figure 6: Hierarchical and life course
exposures on disease risk across generations

• Longitudinal effects of
socioeconomic adversities to
which people are exposed to at
various developmental stages on
health. [Cable, 2014]

• Individual life-course perspective
to inter-generational association
between social determinants and
diseases (e.g. parent adverse
childhood experience was
associated with higher odds of
poor child overall health status
[Lê-Scherban et al., 2018])
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Traditional Data Collection in Public Health
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Measurement of Social Determinants of Health

• Data sources at individual and population level: Electronic Medical
Record (SoDH screening), American Community Survey (ACS), U.S.
Census Bureau, Nationally representative surveys (e.g. NHANES, BRFSS)

• Each construct is measured by multiple indicators (e.g. Housing: has
housing, rental housing, sanitation status, crowding, indoor air quality)
[Kusnoor et al., 2018]
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Internet and Mobile Data - examples

Figure 7: Person-generated data sources used
today in public health

Health outcome
(measured) examples

• Parkinsons (symptoms)
[Zhan et al., 2018]

• Diabetes (mood,
behaviors, diet)
[Akbari and Chunara, 2019]

• Mental health (activity)
[Quisel et al., 2016]
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Data vs. Models

. . . while the fair ML literature has largely focused on “de-biasing” methods
and viewed the training data as fixed, most of our interviews report that their
teams consider data collection, rather than model development, as the most
important place to intervene [Holstein et al., 2019].
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Challenge in Measuring Social Determinants

• Data sharing; calls for centralized repository and open source assessment
tools [National Academies of Sciences et al., 2019]

• Denominator challenges need to be addressed in order to understand and
reach populations at risk [Chunara et al., 2017]

• Internal validity: the degree of confidence that the causal relationship
being tested is trustworthy and not influenced by other factors or variables.
External validity: the extent to which results from a study can be
applied (generalized) to other situations, groups or events.
[Mitchell and Jolley, 2004]
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Challenge in Measuring Social Determinants: Collection medium moderates
person-generated data

Figure 8: Varying specificity, sensitivity, NPV and PPV

in multiple influenza syndromic surveillance systems.

Characteristics of the
surveillance approach (data
collection method, survey
questions, the places/groups
and time periods data are
collected from) for which
predictive performance of the
same case definition can vary
[Chunara et al., 2020].

18



Challenge in Measuring Social Determinants: Understanding the data generating process

Figure 9: Role of the built and online social environments on expression of dining on
Instagram [Mhasawade et al., 2020a]
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Challenge in Measuring Social Determinants: Variable forms and pathways

Figure 10: The Influence of Income on Health [Marmot, 2002]
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Challenges in Measuring Social Determinants

• Mapping from construct space to observed space through imperfect proxy
features and associated metrics [Friedler et al., 2016]

Definition (Observed space (OS). The observed space (with respect to T) is a
metric space OS = (P̂ , d̂). We assume an observation process g : P → P̂

that generates an entity p̂ = g(p) from a person p ∈ CS .
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Challenge in Measuring Social Determinants: Biases in measurement

“There is a need for better understanding—both among data analysts and
among consumers of data—of the weighty implications of analytic choices in
measurement of health disparities, health inequities, and social determinants
of health”
“Bias can stem not only from the value preferences or habits that inform
choice of measurement practice(s) but also from the effect that different data
presentation approaches have on audience perceptions or judgments of the
resulting meaning of the data or analysis”
[Penman-Aguilar et al., 2016]
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Are Social Determinants Intervenable? [Schwartz et al., 2016]

• Violating Stable Unit Treatment Value
(SUTVA) assumption in causal
inference

• Downstream manipulable mediators of
social constructs as the exposures of
interest (e.g. encouraging reading to
children to improve cognitive
development)

• Consider structural change for
upstream social determinants (e.g.
improving childhood SES)

Figure 11: From upstream to
individual interventions
[Lehman, 2019]
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Simulation Study of Social Determinant Interventions on Chronic Illness

Figure 12: Hypothesized causal pathways of
social and biological determinants of health
[Mahamoud et al., 2013].

Figure 13: Modified causal graph based
on relations in data
[Mahamoud et al., 2013].

24



Social Determinants in Cardiovascular Disease Prediction Machine Learning Models

How are researchers incorporating social determinants in cardiovascular disease
prediction models? [Zhao et al., 2020]

• 2728 publications were identified, and 120 publications were included

• Commonly measured social determinants: age, gender, ethnicity/race,
education and income

• Most popular machine learning algorithms: random forest, SVM, decision
tree, neural nets

• Data sources: cohort/observational studies, clinical trials, hospital
electronic medical records
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Reflections from CVD & Social Determinants Case Study

• Lack of comprehensive social determinants data (e.g. social environment,
contextual information) from cohort studies or clinical datasets

• Most measurement at individual instead of community/population level

• Outcomes vary, including risk scores, prognosis of CVD and readmission
to hospitals

• How to apply models and results to actionable interventions to address
health disparity and improve health equity
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ML in Population and Public Health

For a complete list of related articles, more information and to give feedback:
https://ChunaraLab.github.io/MLPH/
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